Chemistry of sulfate chloride perhydrates Part 2.[†]—Reperhydration by H₂O₂

Stephen D. Cosgrove and William Jones

Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK CB2 1EW

The perhydrate, $4Na_2SO_4 \cdot NaCl \cdot 2H_2O_2$, has been heated in order to fully desorb the H_2O_2 . The resulting powder [an intimate mixture of $Na_2SO_4(III)$ and NaCl] was exposed to the vapour above a solution of H_2O_2 . Two mechanisms are observed for the regeneration of the perhydrate: at high concentrations of H_2O_2 (> 0.60 g cm⁻³), direct reaction between the powder and the gaseous H_2O_2 occurs; at concentrations < 0.60 g cm⁻³, the powder becomes wet and the Na_2SO_4 phase (III) transforms into phase (V). Regeneration into the perhydrate then proceeds by crystallisation of the perhydrate from the slurry of $Na_2SO_4(V)$ and NaCl. The two mechanisms occur together at intermediate concentrations of H_2O_2 .

Perhydrates are important components of powder laundry detergents and can be regarded as a convenient solid form of H_2O_2 . Of particular interest is the stable perhydrate, $4Na_2SO_4 \cdot NaCl \cdot 2H_2O_2$ (SSCP), developed for use with neutral detergents.¹ The H_2O_2 is *included* within channels defined by sulfate oxygens in the *ab* plane.² In Part 1,³ we reported that when SSCP is heated, the H_2O_2 is released intact, leaving a very intimate mixture, denoted SSCPD, of Na_2SO_4 (III) and NaCl. It is at first surprising that Na_2SO_4 (III) is formed since phase V is regarded as the stable form of Na_2SO_4 .⁴ We believe that the reason for its formation is due to the existence of an epitaxial relationship between the Na_2SO_4 (III) and NaCl.

Adams *et al.* showed⁵ that the decomposition of $K_2C_2O_4 \cdot H_2O_2$ and $Na_2C_2O_4 \cdot H_2O_2$ under humid conditions could be retarded by low pressures of H_2O_2 , implying that eqn. (1) is reversible.

$$MX \cdot H_2O_2(s) \leftrightarrow MX_{(s)} + H_2O_{2(g)}$$
(1)

We were therefore interested to find out whether a perhydrate may be regenerated once all of the H_2O_2 had been desorbed. We have termed this regeneration *reperhydration*, akin to rehydration to form a hydrate. We have previously communicated that reperhydration of SSCP is indeed possible.⁶ In this paper, we report in detail on the kinetics and mechanisms of reperhydration using a range of concentrations of H_2O_2 up to 0.85 g cm⁻³.

Experimental

Using laboratory grade reagents, a solution of 0.42 g $(7.2 \times 10^{-3} \text{ mol})$ NaCl in 8 g of 0.30 g cm⁻³ H₂O₂ was added dropwise to a solution of 4.09 g (28.8 $\times\,10^{-3}$ mol) of Na_2SO_4 in 20 g of $0.30 \,\mathrm{g}\,\mathrm{cm}^{-3}$ H₂O₂. The resulting solution was allowed to evaporate in air and yielded well formed crystals of SSCP. These were ground and then heated to fully desorb the H_2O_2 (grinding did not affect the structure or H_2O_2) content). The resultant powder was then placed in contact with the vapour above a 0.30 g cm^{-3} solution of H_2O_2 and the whole covered with a large crystallising dish for up to 6 days. This was repeated for 0.10, 0.20, 0.38, 0.50, 0.55, 0.60 and 0.85 g cm^{-3} concentrations. In the same way, the effect of pure H_2O vapour (*i.e.* $0 \text{ g cm}^{-3} H_2O_2$) was also examined, using H₂SO₄ solutions of different known relative humidities.⁷ The extent of reperhydration was followed by powder X-ray diffraction (PXRD), thermogravimetry (TG) and titrimetric available oxygen content (AVOX).3 Optical microscopy of

samples before and after reperhydration was also performed. Evidence for first order kinetic behaviour can be obtained using a form of the Avrami–Eroveef equation⁸

$$-\ln\left(1-\alpha\right) = kt \tag{2}$$

where α is the extent of reperhydration and k is the first order rate constant. Since we can extrapolate to A_{∞} (the final AVOX after equilibrium has been reached) α can be obtained from the ratio of A to A_{∞} , where A is the AVOX at time t.

Results

The influence upon SSCPD of the vapour above H_2O_2 solutions up to 0.85 g cm⁻³ concentration is discussed below. The observations suggest reperhydration can occur *via* two different mechanisms. The first occurs using >0.60 g cm⁻³ H₂O₂ whilst the second happens when <0.50 g cm⁻³ H₂O₂ is used. A combination of both mechanisms occurs for concentrations 0.50–0.60 g cm⁻³ H₂O₂.

(i) 0.60–0.85 g cm⁻³ H₂O₂

Fig. 1 shows PXRDs of SSCPD exposed to $0.60 \text{ g cm}^{-3} \text{ H}_2\text{O}_2$ for different periods of time up to 6 days. Reperhydration appears to be close to the reverse of deperhydration:^{3,6} there is a decrease in reflection intensity over time of Na₂SO₄(III) and NaCl phases and a corresponding increase in intensity of

Fig. 1 PXRD patterns showing reperhydration of SSCPD using a 0.60 g cm⁻³ H₂O₂ solution (\bigtriangledown , SSCP; \diamond , Na₂SO₄(III); *, Na₂SO₄(V); •, NaCl. For clarity, only representative reflections are labelled)

[†] Part 1: ref. 3.

Fig. 2 Reperhydration of SSCPD using a $0.60 \text{ g cm}^{-3} \text{ H}_2\text{O}_2$ solution as shown by AVOX. The curve is obtained from eqn. (2)

reflections due to regenerated SSCP. A fourth phase, $Na_2SO_4(V)$, is discernible after 15 h and is present in much lower concentrations in the preceding two samples (2 and 10 h). However $Na_2SO_4(III)$, NaCl and SSCP phases generally dominate the patterns.

The corresponding AVOX (as a percentage of that theoretically expected for a pure sample of SSCP) of the sample vs. time of exposure to the vapour above $0.60 \text{ g cm}^{-3} \text{ H}_2\text{O}_2$ solution is plotted in Fig. 2. There is apparently very little induction period, but rather, a rapid rise in oxygen content levelling off at 100% after 48 h. In other words after 48 h there are 2 mol of H₂O₂ per mol of sample. Regeneration into $4\text{Na}_2\text{SO}_4 \cdot \text{NaCl} \cdot 2\text{H}_2\text{O}_2$ is therefore complete and the sample contains just one phase, SSCP. There is reasonable correlation of the points to eqn. (2) ($R^2 = 0.984$), giving a first order rate constant of $20.2 \times 10^{-6} \text{ s}^{-1}$.

Moving to the highest concentration of H_2O_2 available to us, 0.85 g cm⁻³, results in almost identical behaviour. PXRD shows that only Na₂SO₄(III), NaCl and regenerated SSCP phases are present throughout the reperhydration.⁹ No Na₂SO₄(V) is observed and reperhydration occurs directly from Na₂SO₄(III) and NaCl. As at 0.60 g cm⁻³ concentration, completion of the reaction has also occurred by 48 h (Table 1). Furthermore, the rate constant obtained from the AVOX values, 20.7×10^{-6} s⁻¹, is very similar to that obtained using a concentration of 0.60 g cm⁻³ H₂O₂ (Table 1).

The powder remained visibly dry throughout the experiment and did not adhere to the Petri dish. Fig. 3 shows optical micrographs of crystals of SSCP which have been heated in order to desorb all H_2O_2 and the same crystals after 4 days reperhydration at 0.85 g cm⁻³ H_2O_2 . Although the shape of the SSCPD particles is less well defined after reperhydration, there is little evidence of condensate around the powder.

.....

Fig. 3 Optical micrographs of crystals of SSCPD before and after reperhydration using a $0.85 \text{ g cm}^{-3} \text{ H}_2\text{O}_2$ solution for 4 days

Thermal analysis also confirms that the powder remains dry. Fig. 4(a) reveals that the loss of H_2O_2 from SSCPD exposed to 0.60 g cm⁻³ H_2O_2 for 10 h occurs between 150 and 200 °C (comparable to that from pure SSCP). More importantly, a mass loss at lower temperatures which would be indicative of water loss, is not observed.

(ii) $< 0.50 \text{ g cm}^{-3} \text{ H}_2\text{O}_2$

At concentrations of $H_2O_2 < 0.50 \text{ g cm}^{-3}$, the powder becomes visibly damp and adheres to the Petri dish. Indeed after 6 days the powder is better described as a slurry. Fig. 5 shows the optical micrographs of crystals of SSCPD before and after it has been exposed to 0.30 g cm⁻³ H_2O_2 for 4 days. Considerable condensation of liquid has formed on and around the crystals. Further evidence for the powder becoming wet is afforded by the TG of SSCPD exposed to 0.30 g cm⁻³ H_2O_2 for 10 h [Fig. 4(b)]. There is a significant mass loss of physisorbed

Table 1 Summary of experimental details of reperhydration of SSCPD

H_2O_2 solution/ g cm ⁻³	equivalent %RH above solution	mol fraction of H_2O_2 in vapour above solution	AVOX after 6 days ^a (% of theoretical)	first order rate constant 10^{-6} s ⁻¹	correlation of points (R^2)
0.10	94	0.002	10		
0.10	88	0.002	30		_
0.30	80	0.008	65	9.4	0.999
0.38	74	0.011	87	10.0	0.985
0.50	62	0.020	96	10.5	0.983
0.55	58	0.025	98	18.2	0.983
0.60	54	0.033	100	20.2	0.984
0.85	36	0.079	100	20.7	0.934
0.55 0.60 0.85	58 54 36	0.025 0.033 0.079	98 100 100	18.2 20.2 20.7	0. 0. 0

^aAn equilibrium value was always obtained after 6 days.

Fig. 4 TG traces of SSCPD exposed to (a) $0.60\,g\,cm^{-3}$ and (b) $0.30\,g\,cm^{-3}$ H_2O_2 solutions for 10 h

Fig. 5 Optical micrographs of crystals of SSCPD before and after reperhydration using a $0.30~g~cm^{-3}~H_2O_2$ solution for 4 days

H₂O occurring at 50 °C. The second mass loss (120–165 °C) corresponds to either physisorbed H₂O₂ or to bound H₂O associated with hydrate formation. The third mass loss (165–210 °C) is identified with tightly bound H₂O₂, *i.e.* H₂O₂ held within the channels of SSCP, since its magnitude of *ca*. 0.6% of the total mass would give an expected AVOX (as % of the theoretical) of this sample of 0.6/9.8=6.1% (*cf.* 5.6% measured).

The powder X-ray diffraction patterns of successive exposures of SSCPD to $0.30 \text{ g cm}^{-3} \text{ H}_2\text{O}_2$ are shown in Fig. 6. A powder pattern of pure $\text{Na}_2\text{SO}_4(\text{V})$ is also included in the figure. All of the reflections in the PXRDs can be assigned as either $\text{Na}_2\text{SO}_4(\text{III})$, $\text{Na}_2\text{SO}_4(\text{V})$, NaCl or SSCP. Within 2 h, the powder has changed from being a mixture of $\text{Na}_2\text{SO}_4(\text{III})$ and NaCl to a mixture of $\text{Na}_2\text{SO}_4(\text{V})$ and NaCl. Although there is little evidence for SSCP in the PXRD before 15 h,

Fig. 6 PXRD patterns showing reperhydration of SSCPD using a 0.30 g cm⁻³ H₂O₂ solution. The PXRD pattern of Na₂SO₄(V) is also included (key as in Fig. 1).

Fig. 7 Reperhydration of SSCPD using a $0.30 \text{ g cm}^{-3} \text{ H}_2\text{O}_2$ solution as shown by AVOX. The curve is obtained from eqn. (2).

AVOX measurements show that there is some active oxygen present even after 2 h.

Despite SSCP reflections dominating the PXRD pattern after 6 days, reflections due to Na₂SO₄(V) and NaCl still remain and complete regeneration of the solid has not occurred. Fig. 7 shows the rise in AVOX of the samples during reperhydration. There is no induction period and the available oxygen content rises to 65% (of the theoretical value expected for pure SSCP) over 6 days. Further reaction is unlikely to occur beyond 65% regeneration, as shown by the levelling off of the AVOX in the figure. The AVOX values fit well to the model curve, obtained using eqn. (2), and a first order rate constant of 9.4×10^{-6} s⁻¹ (Fig. 7). This rate constant is half that observed for solutions ≥ 0.60 g cm⁻³ H₂O₂.

Using a slightly higher H_2O_2 concentration of 0.38 g cm⁻³, behaviour remains the same in the PXRD: within 2 h all $Na_2SO_4(III)$ has transformed to $Na_2SO_4(V)$ and subsequent growth of the SSCP phase proceeds from $Na_2SO_4(V)$ and NaCl phases.⁹ The rate constant of reperhydration, 10.0×10^{-6} s⁻¹, is also in very close agreement with that obtained at 0.30 g cm⁻³ H_2O_2 concentration (Table 1). The final equilibrium AVOX is 87%, significantly higher than that measured for 0.30 g cm⁻³ H_2O_2 (65%).

Fig. 8 shows the influence upon SSCPD of solutions of

Fig. 8 PXRD patterns of SSCPD exposed to H_2SO_4 solutions of different relative humidities (key as in Fig. 1)

H₂SO₄ having different relative humidities (% RH) at 25 °C. Each pattern was measured after 2 h exposure to the vapour above the H₂SO₄ solution. It is clear that SSCPD is stable for 2 h at humidities $\leq 50\%$ RH but that partial (III→V) phase transformation of Na₂SO₄ occurs after 2 h at 60% RH. Exposure of SSCPD to the vapour above solutions of $\geq 70\%$ RH results in complete phase transformation.

(iii) $0.50-0.60 \text{ g cm}^{-3} \text{ H}_2\text{O}_2$

The transition between the two mechanisms occurs in the range 0.50–0.60 g cm⁻³ H₂O₂. Fig. 9 and 10 show reperhydration of SSCPD using 0.55 g cm⁻³ H₂O₂ over 6 days as monitored by PXRD and AVOX respectively. After 2 h there are four phases very clearly visible in the PXRD: Na₂SO₄(III), Na₂SO₄(V), NaCl and regenerated SSCP. After 10 h, the Na₂SO₄(III) phase is much less prominent but still visible and regeneration of the product, SSCP, is clearly underway. There is good first order obedience of the values obtained by AVOX to eqn. (2), giving a rate constant of $18.2 \times 10^{-6} \text{ s}^{-1}$. This value approaches that observed for $\ge 0.60 \text{ g cm}^{-3}$ solutions.

Reperhydration using $0.50 \text{ g cm}^{-3} \text{ H}_2\text{O}_2$ shows similar behaviour to more dilute solutions, with Na₂SO₄(V) and NaCl forming within 2 h. However, unlike behaviour shown by more dilute solutions, the Na₂SO₄(III) phase persists throughout the reaction as monitored by PXRD.⁹ The trend towards complete reperhydration at higher concentrations is seen to continue at 0.50 g cm⁻³ H₂O₂ as seen by an AVOX value after 6 days of 95.8% (Table 1). Good first order kinetics are

Fig. 9 PXRD patterns showing reperhydration of SSCPD using a 0.55 g cm $^{-3}$ H_2O_2 solution (key as in Fig. 1)

Fig. 10 Reperhydration of SSCPD using a $0.55 \text{ g cm}^{-3} \text{ H}_2\text{O}_2$ solution as shown by AVOX. The curve is obtained from eqn. (2).

displayed giving a rate constant of $10.5 \times 10^{-6} \text{ s}^{-1}$, in agreement with those obtained at 0.30 and 0.38 g cm⁻³ (Table 1).

Discussion

That SSCP can be regenerated after thermal treatment is understandable for a number of reasons. Firstly, the $Na_2SO_4(III)$ and NaCl components remain intimately mixed because the crystal morphology remains intact upon heating (Fig. 3). The retention of close proximity between the Na_2SO_4 and NaCl components results in the ability of SSCPD to act as a template for the reaction. In other words some 'memory' of the original (*i.e.* SSCP) structure is able to be preserved. Secondly, during the regeneration of SSCP, strong hydrogen bonds are formed,² which also act to drive the reaction.

Brodale and Giauque have shown that $Na_2SO_4(V)$ has a lower free energy (and hence a higher stability¹⁰) than $Na_2SO_4(III)$ at temperatures up to 244 °C.⁴ That SSCP deperhydrates to $Na_2SO_4(III)$ rather than $Na_2SO_4(V)$, suggests that the activation energy of deperhydration is lower if $Na_2SO_4(III)$ rather than $Na_2SO_4(V)$ is formed. Using these two pieces of information a free energy diagram is constructed in Scheme 1. The position of SSCP has been arbitrarily chosen in relation to $Na_2SO_4(V)$.

It is clear from Scheme 1 that for $Na_2SO_4(V)$ to react during reperhydration it must either obtain additional energy (A + B) or proceed *via* a dissolution stage whereby preferential crystallisation of either $Na_2SO_4(III)$ or SSCP can occur. This therefore implies that the formation of SSCP is favoured from $Na_2SO_4(III)$ rather than $Na_2SO_4(V)$. Indeed, the rate constant

Scheme 1 Free energy diagram for SSCP, Na₂SO₄(V) and Na₂SO₄(III)

for formation of SSCP directly from Na₂SO₄(III) (observed using solutions $\geq 0.60 \text{ g cm}^{-3}$) is higher than that from Na₂SO₄(V) (observed using lower concentrations).

The degree of formation of SSCP is dependent on the concentration of H₂O₂ (Table 1). Incomplete conversion to SSCP occurs when low concentrations of H2O2 are used and is accompanied by the SSCP powder becoming wet. Galwey and Hood showed that H2O2 decomposes in solutions of Na_2CO_3 and that $Na_2CO_3 \cdot 1.5H_2O_2$ itself decomposes in saturated salt solutions.¹¹ Rapid decomposition of SSCP is known to occur at humidities >70% RH (equivalent¹² to a $\leq 0.40 \text{ g cm}^{-3} \text{ H}_2\text{O}_2$ solution).⁹ It therefore seems probable that as the powder becomes wet, the rate of decomposition of H₂O₂ or SSCP within the slurry increases. If either rate approaches the rate of formation of SSCP, regeneration will slow down and stop, thus resulting in incomplete conversion. Since the powder becomes less wet at higher concentrations, due to the decreasing vapour pressure of the H₂O₂ solution, the percentage conversion is higher.

In all of the PXRDs the reflections can be assigned as either Na₂SO₄(III), Na₂SO₄(V), NaCl or SSCP, thus indicating that a single or mixed salt hydrate is not formed during reperhydration. Indeed, since NaCl depresses the temperature of transition between anhydrous and hydrated Na₂SO₄ from 32.4 to 18 °C,¹³ it seems unlikely either Na₂SO₄ •7H₂O or Na₂SO₄ •10H₂O would form, given the experimental conditions employed here. The TG mass loss at 120–150 °C in Fig. 4(b) is therefore attributed to physisorbed H₂O₂ and not H₂O from a hydrate intermediate.

There are two types of behaviour observed in the reperhydration of SSCPD, suggesting two different mechanisms. These will be denoted M1 for H_2O_2 solutions < 0.50 g cm⁻³ and M2 for solutions ≥ 0.60 g cm⁻³. Evidence for the different behaviour stems from the first order rate of increase of available oxygen content, the persistence of the Na₂SO₄(III) phase and the lack of Na₂SO₄(V) phase formation in the PXRD patterns, together with the observed dryness of the powder. The mechanisms will be discussed separately, M1 first.

It is well known that water causes phase transformation of phase III of Na₂SO₄ into phase V.¹⁴ PXRD shows here that the III \rightarrow V transformation proceeds rapidly under the experimental conditions of reperhydration using H₂O₂ solutions <0.50 g cm⁻³. Table 1 also shows that since water has a far higher vapour pressure than H₂O₂, the vapour composition is dominated by water at all but very high concentrations. It is therefore understandable that within 2 h the PXRD patterns of reperhydration show complete conversion of the Na₂SO₄(III) in SSCPD to Na₂SO₄(V), when using 0.30 and 0.38 g cm⁻³ H₂O₂ solutions. That the powders become wet over the course of the experiment, suggests water is not only acting as a catalyst for the transformation but also condensing onto the powder forming a slurry. Again this is understandable since Na₂SO₄ is well known for being hygroscopic.

Phase transformation into Na₂SO₄(V) and NaCl is therefore likely to occur far faster at low H₂O₂ concentrations than is the reaction of H₂O₂ to form the perhydrate. Indeed any product formed from the direct reaction between the gaseous H₂O₂ and the solid may soon dissolve into the slurry. Most of the reaction to form SSCP, however, occurs after the powder becomes wet. The rate constant observed for reperhydration using <0.50 g cm⁻³ solutions (*ca.* 10×10⁻⁶ s⁻¹) therefore corresponds to the rate of crystallisation of SSCP from the slurry. This rate is too slow for complete conversion to SSCP to occur before factors such as the decomposition of H₂O₂ or SSCP become important.

PXRD patterns show that phase transformation into $Na_2SO_4(V)$ and NaCl does not occur at 0.85 g cm⁻³ H₂O₂ and occurs only slightly at 0.60 g cm⁻³ H₂O₂. Rather, the $Na_2SO_4(III)$ and NaCl phases persist for over a day by which time reperhydration is almost complete. This is somewhat

remarkable since at 0.60 g cm⁻³ of the solution the mol fraction of H₂O in the vapour is still 0.93 (Table 1). Despite an apparently large amount of water present, the III \rightarrow V phase transformation is resisted. Shumb *et al.*¹² point out that H₂O₂ solutions > 60 mass% are hygroscopic and are likely to absorb water vapour from the atmosphere. Therefore, under laboratory conditions, there is a net reduction in water vapour above the solution. Since Na₂SO₄(III) is essentially stable for a few days at typical laboratory humidity (*ca.* 50% RH), it certainly will be stable in the presence of a hygroscopic solution of H₂O₂ (*e.g.* a 0.85 g cm⁻³ solution of H₂O₂ at 25 °C corresponds to a humidity of 36% RH). This is shown by the PXRD patterns in Fig. 8 in which the III \rightarrow V phase transformation occurs after 2 h, only at relative humidities of $\geq 60\%$.

The evidence presented here suggests that reperhydration using solutions of $H_2O_2 \ge 0.60 \text{ g cm}^{-3}$ proceeds *via* direct reaction of the solid [Na₂SO₄(III) and NaCl] with the gaseous H_2O_2 , in the absence of any discernible liquid intermediate. A direct solid–gas reaction mechanism is supported by observations by Sakaguchi *et al.* that Na₂SO₄ has an affinity to sorb O₂ gas.¹⁵ It is probable that Na₂SO₄ has an affinity towards H_2O_2 , especially if the influence of H_2O can be minimised *i.e.* by the use of hygroscopic H_2O_2 solutions.

Reperhydration using solutions $< 0.50 \text{ g cm}^{-3}$ always give rate constants of ca. $10 \times 10^{-6} \text{ s}^{-1}$ whilst for solutions $\geq 0.60 \text{ g cm}^{-3} \text{ H}_2\text{O}_2, \ k \approx 20 \times 10^{-6} \text{ s}^{-1}$. The consistency of k within each category gives credence to these values and hence to two mechanisms. Intermediate rate constants are obtained for the narrow range 0.50–0.60 g cm⁻³ H₂O₂. This range could be even narrower since reperhydration at 0.55 g cm^{-3} gives a rate constant very close to $20 \times 10^{-6} \text{ s}^{-1}$ suggesting an upper limit nearer ca. $0.58 \text{ g cm}^{-3} \text{ H}_2\text{O}_2$. The stability of Na₂SO₄(III), as monitored by PXRD, also testifies that the range in which both mechanisms are active is narrow. The vapour pressure curve for the H₂O₂-H₂O system¹⁶ is shown in Fig. 11. The point of inflection of the curve given by the minimum of the first differential, occurs at 0.545 g cm⁻³ H₂O₂. This value correlates exceptionally well with the middle of the transition between the mechanisms if 0.50 and 0.57 g cm⁻³ are taken as the transition extremes. It is also in good agreement with the PXRD patterns in Fig. 8, since 60% RH (the humidity at which phase transformation is starting to occur after 2 h) corresponds to a H_2O_2 solution slightly above 0.50 g cm⁻³. We propose therefore that a direct reaction between the solid SSCPD and H₂O₂ vapour only occurs when the H₂O₂ solution has a concentration $>0.545 \text{ g cm}^{-3}$ and hence a relative humidity of <59%. These observations are in accord with

Fig. 11 Total vapour pressure curve for the H_2O_2 - H_2O system and the derivative of the curve showing point of inflection at 0.545 g cm⁻³ H_2O_2

those made by Adams and co-workers who associated a critical dependence of perhydrate stability upon relative humidity with the formation on the surface of the solid, of a film of saturated solution.^{5,17}

Conclusions

Although the channel structure of SSCP does not remain intact upon desorption of H_2O_2 , the resulting product, SSCPD, is able to regenerate SSCP when exposed to low pressures of H_2O_2 (in the form of the vapour above H_2O_2 solutions). The fraction of SSCP formed and the mechanism by which it is formed, has been shown to be dependent on the total vapour pressure of the H_2O_2 solution used. Very concentrated H_2O_2 solutions are hygroscopic and therefore decrease the humidity of the atmosphere whilst more dilute solutions increase the humidity. The concentration of the H_2O_2 solution therefore determines whether the Na_2SO_4 , which is itself hygroscopic, becomes wet and in particular whether phase transformation of any $Na_2SO_4(III)$ into $Na_2SO_4(V)$ occurs.

If the powder becomes wet, Na₂SO₄ (III \rightarrow V) phase transformation occurs and reperhydration proceeds *via* crystallisation from a Na₂SO₄(V)/NaCl slurry. In this case SSCP formation is incomplete because a saturated salt solution is formed which is known to promote decomposition of H₂O₂ and perhydrates. The rate constant obtained for reperhydration using solutions <0.50 g cm⁻³ H₂O₂ corresponds to the crystallisation of SSCP from the slurry of Na₂SO₄(V), NaCl and H₂O/H₂O₂. From considerations of the free energies of Na₂SO₄(V) and Na₂SO₄(III), using observations from Part 1,³ it is shown that reperhydration of SSCPD from Na₂SO₄(III). This manifests itself in a lower first order rate constant (10×10⁻⁶ s⁻¹).

The hygroscopic nature of very concentrated solutions prevents the water catalysed phase transformation of Na_2SO_4 (III \rightarrow V). Since H₂O is being removed from the atmosphere, the sample remains essentially dry, therefore allowing the direct

reaction of H_2O_2 with the solid. This mechanism is active as long as there is insufficient water vapour pressure to cause the (III \rightarrow V) transformation within the sample. This has been achieved here by using very concentrated H_2O_2 solutions.

The financial assistance of EPSRC and Solvay Interox Ltd. (CASE award to S. D. C.) is appreciated.

References

- 1 Kao Soap Co. Ltd. and Nippon Peroxide Co. Ltd., Ger. Pat. 2530 539, 1975.
- 2 J. M. Adams, V. Ramdas and A. W. Hewat, *Acta Crystallogr., Sect. B*, 1981, **37**, 915.
- 3 S. D. Cosgrove and W. Jones, J. Mater. Chem., preceding paper.
- 4 G. E. Brodale and W. F. Giauque, J. Phys. Chem., 1972, 76, 737.
- 5 J. M. Adams, L. A. Ashe and C. J. Adams, *Inorg. Chim. Acta*, 1980, 44, L195.
- 6 S. D. Cosgrove and W. Jones, J. Chem. Soc., Chem Commun., 1994, 2255.
- 7 M. E. Solomon, Bull. Entomol. Research, 1951, 42, 543.
- 8 A. K. Galwey, *Chemistry of Solids*, Chapman and Hall, London, 1967, p. 180.
- 9 S. D. Cosgrove, PhD Thesis, University of Cambridge, 1996.
- 10 M. J. Buerger, in *Phase Transformations in Solids*, ed. R. Smoluchowski, J. E Mayer and W. A. Weyl, Wiley, New York, 1951, p. 199.
- 11 A. K. Galwey and W. J. Hood, J. Chem. Soc., Faraday Trans., 1982, 78, 2815.
- 12 W. C. Shumb, C. N. Satterfield and R. L. Wentworth, Hydrogen Peroxide, Reinhold, New York, 1955, pp. 221–231.
- 13 H. G. Wiedemann, W. Smykatz-Kloss and W. Eysel, Therm. Analysis, 2 Proc. 6th ICTA Bayreuth, Birkhäuser Verlag, Basel, 1980, p. 347.
- 14 M. Sakaguchi, M. Ohta and S. Miyazaki, J. Electrochem. Soc., 1984, 131, 1942.
- 15 M. Sakaguchi, M. Ohta and Y. Takashima, *Rare Earths*, 1983, 2, 24.
- 16 G. Scatchard, G. M. Kavanagh and L. B. Ticknor, J. Am. Chem. Soc., 1952, 74, 3715.
- 17 C. J. Adams, J. M. Adams, R. G. Pritchard and V. Ramdas, J. Inorg. Nucl. Chem., 1979, 41, 937.

Paper 7/06385G; Received 1st September, 1997